Monitoring Charge Exchange in P3HT-Nanotube Composites Using Optical and Electrical Characterisation
نویسندگان
چکیده
Charge exchange at the bulk heterojunctions of composites made by mixing single wall nanotubes (SWNTs) and polymers show potential for use in optoelectronic devices such as solar cells and optical sensors. The density/total area of these heterojunctions is expected to increase with increasing SWNT concentration but the efficiency of solar cell peaks at low SWNT concentrations. Most researchers use current-voltage measurements to determine the evolution of the SWNT percolation network and optical absorption measurements to monitor the spectral response of the composites. However, these methods do not provide a detailed account of carrier transport at the concentrations of interest; i.e., near or below the percolation threshold. In this article, we show that capacitance-voltage (C-V) response of (metal)-(oxide)-(semiconducting composite) devices can be used to fill this gap in studying bulk heterojunctions. In an approach where we combine optical absorption methods withC-Vmeasurements we can acquire a unified optoelectronic response from P3HT-SWNT composites. This methodology can become an important tool for optoelectronic device optimization.
منابع مشابه
Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polyme...
متن کاملToward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties.
We demonstrate single-walled carbon nanotube (SWCNT)/P3HT polymer bulk heterojunction solar cells with an AM1.5 efficiency of 0.72%, significantly higher than previously reported (0.05%). A key step in achieving high efficiency is the utilization of semiconducting SWCNTs coated with an ordered P3HT layer to enhance the charge separation and transport in the device active layer. Electrical chara...
متن کاملOrganic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots.
Nanocomposites of poly(3-hexylthiophene)-cadmium selenide (P3HT-CdSe) were synthesized by directly grafting vinyl-terminated P3HT onto [(4-bromophenyl)methyl]dioctylphosphine oxide (DOPO-Br)-functionalized CdSe quantum dot (QD) surfaces via a mild palladium-catalyzed Heck coupling, thereby dispensing with the need for ligand exchange chemistry. The resulting P3HT-CdSe nanocomposites possess a w...
متن کاملComputational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires
Thermal and electrical transport in a new class of nanocomposites composed of random isotropic two-dimensional ensembles of nanotubes or nanowires in a substrate (host matrix) is considered for use in the channel region of thin-film transistors (TFTs). The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. To simulate transport i...
متن کاملElectrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation
In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structur...
متن کامل